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ABSTRACT
Estimating the travel time for a given path is a fundamental problem
in many urban transportation systems. However, prior works fail to
well capture moving behaviors embedded in paths and thus do not
estimate the travel time accurately. To fill in this gap, in this work,
we propose a novel neural network framework, namely Deep Image-
based Spatio-Temporal network (DeepIST), for travel time estimation
of a given path. The novelty of DeepIST lies in the following aspects:
1) we propose to plot a path as a sequence of “generalized images”
which include sub-paths along with additional information, such
as traffic conditions, road network and traffic signals, in order to
harness the power of convolutional neural network model (CNN)
on image processing; 2) we design a novel two-dimensional CNN,
namely PathCNN, to extract spatial patterns for lines in images by
regularization and adopting multiple pooling methods; and 3) we
apply a one-dimensional CNN to capture temporal patterns among
the spatial patterns along the paths for the estimation. Empirical
results show that DeepIST soundly outperforms the state-of-the-art
travel time estimation models by 24.37% to 25.64% of mean absolute
error (MAE) in multiple large-scale real-world datasets.
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1 INTRODUCTION
With the proliferation of GPS-enabled devices and the needs of
location-aware applications, enormous amounts of trajectory data
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Figure 1: Spatio-temporal moving behaviors in a path

are being generated at an unprecedented speed. The massive trajec-
tory data give opportunities to carry out various mining tasks, such
as trajectory classification, trajectory clustering, travel time estima-
tion, trajectory outlier detection, etc, in support of urban planning
and transportation system operations and management. Among
these mining tasks, estimating the travel time for a given path, which
can be denoted by a sequence of connected road segments in a road
network, is fundamental to many urban transportation systems,
e.g., route planning, freight management, navigation, traffic moni-
toring and ride sharing [31, 38]. It is a nontrivial problem because
1) the travel time is impacted by many factors along the path, such
as the dynamics of traffic condition, the types of road segments and
intersections, and the traffic signals (e.g., traffic lights, stop signs
and crossings); and 2) the spatio-temporal moving behaviors of mo-
bile road users (also refer to as mobile users), while being captured
in trajectories, are not well understood and used.

Let’s use the example trajectory in Figure 1 to illustrate the effect
of the various factors and the moving behaviors of a vehicle driver
who prefers to drive on main streets and highways to arrive at the
destination fast. The (red) path shows that i) the driver first wanders
on local streets from the source to approach the closest intersection
to a main street, during which she encounters multiple intersec-
tions, stop signs and traffic lights, takes turns frequently, and thus
moves slowly; ii) then she moves fast on that main street towards
the destination and seldom stops; and finally iii) she wanders again
on local streets to the destination. While we can roughly recognize
the general moving behaviors of the driver, manually identifying
various potential moving behaviors of drivers for travel time esti-
mation is impractical as the moving behaviors in the real-world are
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Figure 2: The architecture of DeepIST
really complex. Therefore, research on developing effective tech-
niques to exploit the abundant collected trajectory data available
nowadays is a mandate. Ideally, an effective travel time estimation
technique would automatically learn important moving patterns
(in both of the spatial and temporal dimensions) along paths corre-
sponding to various major factors, leading to accurate estimation
of travel time for paths. For example, as illustrated at the bottom of
Figure 1, (visible) spatial moving patterns and temporal patterns
expressed in a vector may be captured. The four spatial patterns
signal the “moving path” and “source and destination” of the path,
the traffic conditions along the path and the intersections of the
underlying road network. Moreover, the temporal patterns denote
some implicit factors, e.g., ordering relationship among a sequence
of spatial patterns.

The problem of travel time estimation has been widely studied
in the past [19, 20, 26, 35]. However, they are usually designed in an
ad hoc fashion, based on some strong assumptions, which results
in poor accuracy. Recently, deep learning techniques have been
explored for travel time estimation [31, 34, 38]. DeepTravel [38]
represents a trajectory by a sequence of geographical grid cells,
where manually-craft features are extracted to serve as inputs for
Long Short Term Memory (LSTM) neural network to train a model
for travel time estimation. WDR [34] manually designs a number of
features for query paths and proposes an ensemble regressionmodel
for travel time estimation. DeepTTE [31] employs a sliding window
to transform a path as a sequence of windows of sample points and
extract features from them by a shallow network to train an LSTM
model for travel time estimation. Through our analysis, we observe
two major pitfalls in these existing deep learning techniques: 1)
the spatial features extracted from trajectories do not effectively
reflect the complex spatial moving behaviors (patterns) of mobile
users due to manually-craft features or shallow networks; and 2)
the temporal patterns among the spatial moving patterns are not
well captured due to the vanishing and exploding gradient issues
inherited from the use of LSTM [7, 24, 28].

To address the above-mentioned issues, in this paper, we propose
to represent the movements of mobile users on road networks
(i.e., paths) as generalized images in order to harness the proved
power of convolutional neural network model (CNN) to capture the
complex moving patterns along paths for travel time estimation.
CNN models, a renown class of neural network models for image
processing, are designed to automatically learn spatial hierarchies
of features in different levels of details from image data. To realize

this new idea, an approach is to plot a path into one image, where
useful information corresponding to various factors (e.g., estimated
traffic condition along the path and the underlying road network)
are plotted in individual channels of the image, and then apply
CNN to extract features from the generated image for travel time
estimation. Note that the generated "image" is actually represented
as a three-dimensional tensor where the number of channels is not
limited by three (thus the image is generalized). However, to process
large-size images with high resolution, this approach is impractical
due to limited computing resources, e.g., memory of GPUs, in an
average server. Moreover, while CNN is powerful for modeling
spatial patterns in images, it’s good mainly at capturing features for
image textures but not for lines (i.e., paths in our case) [6]. Further,
it is not known for modeling temporal properties.

To address the above challenges, we propose a new framework,
namely Deep Image-based Spatio-Temporal network (DeepIST), for
travel time estimation of given paths. As shown in Figure 2, DeepIST
is a three-layer framework consists of the following components:
(1) Data preparation layer: to address the resolution issue of images
and maintain the temporal properties of paths, it employs a sliding
window (with a moving distance w as the window size) over a
path from the source to the destination to plot the sub-path in
each window into an image, which also contains the additional
information; (2) Spatial layer: given a sequence of images generated
from a path, we propose a new two-dimensional CNN model, called
PathCNN, which regulates classical convolutions for extracting
spatial features of lines, applies multiple pooling methods adapting
for different types of information in images, extracts spatial moving
patterns embedded in the sub-paths, and consequently transforms
the path into a sequence of spatial moving patterns; and (3) Temporal
layer: given a sequence of spatial moving patterns, it applies a one-
dimensional CNN (1D-CNN) model [14] to capture local temporal
patterns among consecutive spatial patterns along the path for
travel time estimation. To the best of our knowledge, this is the
first attempt to treat paths as sequences of images and seamlessly
capture both spatial moving patterns and their temporal patterns
in paths for travel time estimation.

The major contributions of this work are summarized as follows.
• Novel ideas for travel time estimation. This work ana-
lyzes the challenges of travel time estimation for paths and
proposes to treat paths as images in order to exploit CNN
models to overcome those challenges.

• A new framework for travel time estimation. We pro-
pose DeepIST to estimate the travel time for paths. DeepIST
consists of a data preparation layer to generate sequences
of sub-path images from query paths, and two layers of
CNN-based models to capture spatial moving patterns and
temporal patterns among those spatial patterns, respectively.

• A new CNN for spatial patterns of lines. We propose
PathCNN which adds penalties to enforce convolutions to
extract spatial features of lines (in sub-paths and road net-
works). Moreover, it uses multiple pooling methods adapting
for different types of information in the generated images.

• Empirical evaluation using real-world data. We evalu-
ate DeepIST by conducting a comprehensive evaluation us-
ing two large-scale real-world trajectory datasets in compar-
ison with state-of-the-art techniques, including road-based,
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path-based and deep learning methods. Empirical result
shows DeepIST soundly outperforms all existing models.

The rest of this paper is structured as follows. We review the re-
lated work in Section 2 and provide problem definition and analysis
in Section 3. We detail the proposed DeepIST framework in Section
4 and show experiment results in Section 5. Finally, we conclude
the paper in Section 6 and discuss future research directions.

2 RELATEDWORK
Existing works on travel time estimation generally fall into three
categories: road-based, path-based and learning-based techniques.
Road-Based Travel Time Estimation. Works in this category
estimate the travel time (or speed) on individual road segments in a
road network. In turn, the travel time on a query path is estimated
by summing up the travel times of road segments in the path. Tech-
niques fallen in this category have explored various mechanisms
and learning models, including loop detectors [13, 26], probabilistic
distribution models [5], dynamic Bayesian network [9], spatial-
temporal Hidden Markov Model [36], support vector regression [4],
ensemble models [30], stacked auto-encoder [19] and LSTM [20].
As these prior studies do not consider the interactions and correla-
tions among road segments, they miss high-level moving patterns
among road segments and thus have difficulty achieving high accu-
racy, especially when local errors on individual road segments are
accumulative [12]. Some works do try to model interactions and
correlations between the adjacent road segments [30, 36]. However,
as they still focus on individual road segments or pairs of adjacent
road segments, these works face the same pitfalls mentioned above.
Path-based Travel Time Estimations. To address the above-
mentioned issues, path-based approaches use common characteris-
tics of paths (or their sub-paths) to find similar paths from historical
data for travel time estimation. Some works mine frequently passed
sub-paths from historical path data [18] or extract common sub-
paths between the query path and historical paths [25] or select an
optimal set of sub-paths that together cover the query path [35] to
make estimation by averaging the travel time on the whole query
path. However, these approaches do not lead to good result when
the extracted sub-paths do not match well with that of the query
path. Based on an assumption that paths with close sources and des-
tinations share the same/similar route and thus have similar travel
time, some works find trajectories with nearby source and destina-
tion or nearby trajectories to the query path to derive the travel
time distribution for estimation [17, 32]. However, these approaches
do not achieve good accuracy when their assumption fails. In [37],
Yuan et al. build a landmark graph from trajectory data, based on
top-k frequently traversed road segments, where the travel times
between landmarks are derived. A query path is transformed into
a sequence of landmarks to estimate its travel time by summation
of landmark-to-landmark travel times. However, query paths not
well covered by the landmark graph are not estimated accurately.
In [33], Wang et al. apply tensor decomposition to derive travel time
of unseen sub-paths in historical trajectory data. Thus, the travel
time of a query path passing by these sub-paths can be estimated.
However, it still suffers from the data sparsity issue appearing in
rarely traveled sub-paths.

Learning-based Techniques. Deep learning techniques have re-
cently been proposed for travel time estimation [31, 34, 38]. Deep-
Travel [38] represents a query path as a sequence of geographical
grid cells, where a number of manually-craft features are extracted,
including geographic location, timestamp, driving state, average
speed, and the number of trajectories in a cell in recent minutes and
days. Using the sequence of extracted features as input to an LSTM
model, DeepTravel aims to capture the temporal patterns in a path
to estimate the travel time. However, performing feature engineer-
ing manually is not only labor-intensive but also difficult to capture
numerous complex moving patterns. Moreover, it’s tricky to select a
proper cell size. Too large a cell size aggregates many sample points,
resulting in loss of details in moving behaviors; too small a size
leads the learning process to suffer from data sparsity. Wide-Deep-
Recurrent (WDR) [34] designs a number of manually-craft features
for a query path, including spatial, temporal, traffic, personalized
and augmented information and propose an ensemble regression
model, consisting of a wide, a deep network and an LSTM model,
to estimate the travel time of the path. However, also adopting
manually designed features, it faces the same pitfalls mentioned
above. DeepTTE [31] employs a sliding window to transform a path
as a sequence of windows, each of which contains consecutive sam-
ple points along the query path. By extracting k spatial features
from the sample points in each window (represented as geographic
vectors by non-linearly mapped from their geographic locations),
DeepTTE applies the LSTM model to capture the temporal patterns
in those spatial features to estimate the travel time. While DeepTTE
employs fully connected networks for feature extraction, it does
not effectively capture spatial features of a window [16], not to
mention the complex moving patterns of mobile users.

As mentioned, the approaches adopted by DeepTravel, WDR and
DeepTTE may not effectively capture the complex moving patterns
in paths. In our work, we demonstrate that DeepIST, by harnessing
the strengths of CNN models, is able to automatically (without
human intervene) capture the complex spatial moving patterns and
their temporal patterns along paths for travel time estimation.

3 RESEARCH PROBLEM AND CHALLENGES
In this section, we introduce important terms, describe the targeted
research problem and discuss the challenges.

Definition 1. RoadNetwork. A road network is a directed graph
G = (V ,E,Φ,Ψ), where V is a set of nodes denoting intersections and
each node v ∈ V contains a geographic location (v .lnд,v .lat) (i.e.,
longitude and latitude); E ⊆ V ×V is a set of directed edges denoting
road segments and each edge e ∈ E corresponds to a road segment
from a start node e .s = v ∈ V to an end node e .e = v ′ ∈ V , where
v ′ , v .; and Φ : V → A and Ψ : E → R are type mapping functions
for nodes and edges, respectively, e.g., an intersection has a traffic
signal and a road segment is a highway.

Definition 2. Path. A pathT is a sequence of road segments in a
road network, i.e.,T = {e1, ..., e |T |} where e1 and e |T | may be partial
road segments.

Definition 3. Trajectory. A trajectory is a sequence of spatio-
temporal sample points generated from the movement of a mobile user
on a path, where a sample point contains a location (i.e., longitude
and latitude) and a timestamp.
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Owing to the advent in positioning technology, trajectory data
of mobile users can be easily collected and used for transportation
analytics, including travel time estimation. Historical trajectories,
which can be mapped to paths on road networks using map match-
ing techniques, provide ground truth for learning a predictive model
for travel time estimation of paths. In the following, we formally
state our research goal.

Definition 4. Travel Time Estimation for Paths. Given a
path dataset (converted from historical trajectories)D =

{
(Ti , si ,ai )

} |D |

i=1,
where Ti is the i-th path, si is the departure time and ai is the ar-
rival time, we learn a neural network based model to estimate the
travel time on a path by extracting spatial moving patterns and their
temporal patterns from D for training. During the test phase, given a
query path Tq and a departure time sq , which is not observed in D,
the travel time of Tq is estimated.

Note that the path data, inherited from trajectories, may also
contain arrival time information at trajectory sample points, which
are not available during test phase. To avoid the learned model
simply counting the number of sample points to exploit the fixed
time gap between consecutive sample points for travel time estima-
tion, we do not directly use the arrival time at trajectory sample
points in training. In this work, we propose a framework, DeepIST,
to tackle the problem of travel time estimation for paths by treating
a path as a sequence of images and exploiting the power of CNN
models to capture the spatial moving patterns and their temporal
patterns in paths for the estimation. To implement the DeepIST
framework, we face two new challenges: (1) Data preprocessing. To
realize our idea, a proper way to transform a path as a sequence of
sub-paths plotted in images is essential for effective and efficient
model learning. How to properly split a path into a sequence of
sub-paths which contain sufficient local spatial information? How
to plot a sub-path in an image, with useful information, such as
the estimated traffic condition, the traffic signals and the under-
lying road network? (2) Spatial and temporal pattern mining. A
well designed model is critical for effective and efficient learning to
capture the spatial and temporal patterns in paths for the intended
estimation. We propose to design an end-to-end CNN-based model
consisting of two layers: (i) the spatial layer, where we propose
a two-dimensional CNN based model, named PathCNN, aiming
to extract the spatial moving patterns of the sub-path in each im-
age, and (ii) the temporal layer, which exploits 1D-CNN to capture
the local temporal patterns among consecutive sub-paths. How
to design a model consisting of the two layers? How to regulate
the convolutions to capture spatial patterns of sub-paths? What is
the proper loss function for model learning? These are research
questions arising in the design of DeepIST.

4 THE DEEPIST FRAMEWORK
As introduced earlier in Figure 2, the DeepIST framework consists
of three layers: Data preparation layer, Spatial layer and Temporal
layer. In the section, we detail our design in each layer.

4.1 Data Preparation Layer
Asmentioned earlier, simply plotting the whole path into one image
for CNN models to estimate the travel time is not a good idea

path

road
network

traffic
condition

sliding
window

sub-pathtraffic
signals

Figure 3: Data preparation layer Figure 4: An image

due to the excessive computing resources required for processing
large-size images with high resolution. Moreover, large-size images
usually require more layers in deep learning models to process, thus
incurring expensive training time. On the other hand, small-size
images with low resolution may not provide sufficient details of the
path to achieve a good performance. Therefore, for a given path,
instead of generating one image for the whole path, we propose to
employ a sliding window over the path to generate a sequence of
windows (e.g., the black squares shown in Figure 1), each of which
contains a sub-path. Accordingly, we plot the sub-path in each
window to generate an image. This not only addresses the resolution
issue but also makes the estimation focusing on nearby area of the
path, which is more discriminative for the estimation, than distant
area of the path. More specifically, we employ a sliding window
over the path, with the window sizew and sliding step s , to generate
a sequence of windows, each of which contains aw kilometer sub-
path, i.e., {τ1, ...,τn }. As a result, a path is represented by a sequence
of images containing ordered sub-paths of the path I = {I1, ..., In }.
The sliding step s , (w ≥ s > 0), configures the length of overlaps
between adjacent windows. With maximal sliding step s = w , non-
overlapped windows are generated, which may cause some moving
patterns between adjacent windows to bemissed. On the other hand,
a small step generates a long sequence of windows for the given
path (due to overlaps between adjacent windows) which leads to
expensive training time. To generate an image, we take a geographic
area rlnд × rlat , where rlnд and rlat are the geographic range in
longitude and latitude, surrounding the sub-path. Next we locate
the sub-path τi under processing at the center of the area, which is

calculated by
(
e1 .s .lnд+

∑
ej ∈τi ej .e .lnд
|τi |

,
e1 .e .lat+

∑
ej ∈τi ej .e .lat
|τi |

)
, to

generate an image of fixed resolution, i.e., with k × k pixels.
In addition, we propose to not only plot a sub-path of the path

into an image, but also additional factors whichmay affect the travel
time of a path: 1) the traffic condition on the road segments along
the sub-path; 2) the underlying road network in the geographic
area of the image; and 3) the traffic signals (e.g., stop signs, traffic
lights and crossing) nearby the sub-path. There are other potential
factors which may also affect the travel time, such as the terrain
in the area, the weather condition, the speed limitation of road
segments and the personal driver preference, but here we focus on
the above-mentioned three factors and leave others for future work.
More specifically, in addition to the sub-path itself, information
corresponding to each factor is plotted in an individual channel to
make a “generalized image”.1 While plotting the sub-path provides

1The number of potential channels is not limited, so our approach can be gener-
ally extended to incorporate more factors, which is actually represented as a three-
dimensional tensor.
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Figure 5: Spatial Layer: The PathCNN Model

moving distance and shape of movement, we argue that moving
speed may serve as an indicator of traffic condition for travel time
estimation. In this work, we use a state-of-the-art [20] method that
estimates the hourly traffic condition of road segments. The value
of traffic condition on a road segment is normalized to 0 to 1 by the
maximum speed of the whole dataset to plot the road segment on
the image. On the other hand, we argue that plotting the underlying
road network may provide useful information about intersections
encountered and types of road segments along the sub-path. It takes
a longer time to travel if more intersections are encountered along
a sub-path. In the plot, we differentiate the types of road segments
by the width of lines plotted, e.g., two pixels for highways and one
pixels for others, where the types of road segments are obtainable
from digital maps such as OpenStreetMap [1]. Finally, plotting
traffic signals (e.g., stop sign, traffic light or crossing) as pixels may
help to indicate where needs to take longer time along a sub-path.

In summary, as shown in Figure 3, for a given path T , in the
data preparation layer, we employ a sliding window to split T as
a sequence of windows containing ordered sub-paths {τ1, ...,τn }.
Then, for each window, we generate an image by plotting a sub-
path along with additional factors plotted in individual channels.
Only for visualization, an image shown in Figure 4 plots 1) the
sub-path in Red, 2) the estimated traffic condition of road segments
along the sub-path in Green, and 3) the underlying road network in
the same geographic area of the image in Blue. The traffic signals
are not displayed due to the 3-channel format of a normal image.

4.2 Spatial Layer
After generating a sequence of images for a given path in the pre-
vious layer, the spatial layer extracts spatial moving patterns of
the sub-path in each image. Inspired by [16], we design a two-
dimensional CNN model, called PathCNN, which adopts multiple
pooling methods for adapting the heterogeneous types of infor-
mation i.e., sub-path, traffic condition, underlying road network,
and traffic signals, in images. We argue that max pooling is suit-
able for binary values in sub-path, underlying road network, and
traffic signals, while average pooling is suitable for numeric val-
ues in traffic condition. Therefore, we apply both pooling schemes
in our model. Moreover, as classical CNN models mainly capture
features for image textures instead of lines (e.g., sub-paths in our
case) [6], PathCNN regulates its convolutions to better capture
spatial features of sub-paths.
ModelArchitecture.As shown in Figure 5, the proposed PathCNN
model contains M layers (e.g., M=4), named max+avg layers, fol-
lowed by a flatten layer and a fully-connected layer. More specifi-
cally, for each image Ii in the image sequence I = {I1, ..., In } of a

(a)             (b)                 (c)                  (d)  

Figure 6: Regularizations for Paths

path T , a three-dimensional tensor Ii ∈ Rk×k×d where k is the size
of the image and d is the number of channels used in the image
(e.g., k=100 and d=4). PathCNN takes Ii as input x0i and feeds x0i
into M max+avg layers. In each max+avg layerm, PathCNN has
two separate convolutional layers, which are followed in parallel
by a max pooling layer and an average pooling layer, respectively.
Then, the outputs of the two pooling layers are concatenated as the
final output of the parallel pooling layerm. In each convolutional
layer, it uses padding for location at boundaries of the image to
maintain the dimension of representations. The transformation at
each layerm is derived as follows:

xi
m
max =max_poolinд

(
f (xm−1

i ∗Wm
2Dmax

+ bm2Dmax
)
)

xi
m
avд = avд_poolinд

(
f (xm−1

i ∗Wm
2Davд

+ bm2Davд
)
)

xmi = (xi
m
max ,xi

m
avд)

(1)

where ∗ denotes the convolutional operation and f (·) is an activa-
tion function. Here, we use the ReLU function for activation, i.e.,
f (z) = ReLU (z) = max(0, z).Wm

2Dmax/avд
and bm2Dmax/avд

are the

weights and biases of convolutions in themth convolution layer
for max pooling and for average pooling, respectively. We then
usemax_poolinд(·) and avд_poolinд(·) to reduce the dimension of
the representations after applying convolutions. The number of
convolutioins in each convolutional layer in each max+avg layer is
denoted as cm2D and the size of each convolution is denoted as f2D ,
(e.g., cm2D=16, 32, 64, 128 form=1,2,3,4, respectively and f2D=3, as
shown in Figure 5).

There are other potential ways to design the max+avg layer. For
example, instead of two convolutional layers, using one followed
by both of the max pooling and average pooling layers. We evaluate
the different designs in the experiments.

AfterM max+avg layers, we use a flatten layer to transform the
output xMi to a feature vector si , where the length of si depends on
the size of input image. Finally, we use a fully-connected layer to
apply non-linear transformation to reduce the dimension of si to a
feature vector si ∈ Rλ (e.g., λ = 1024 in Figure 5), which represents
the spatial moving patterns in τi derived as si = f

(
Wsi +b

)
, where

W and b are the weights and biases of the fully-connected layer.
Note that we adopt dropout mechanism [16] in the fully-connected
layer to avoid overfitting and make the model learning more robust.

Finally, for a given image sequence I = {I1, ..., In } of a trajectory
T , after each image Ii is processed by PathCNN into a feature vector
si , we concatenate each si as a matrix S ∈ Rn×λ , which represents
a sequence of spatial moving patterns along T .
Regularization for Paths. As mentioned earlier, although CNN is
powerful for modeling spatial patterns in general images, it captures
features for textures well but not good at lines [6]. Although the
regularization methods for convolutions in CNN, e.g., L1 and L2
regularization, dropout [8], batch normalization [11], and weighted
dropout [10], have been well studied, they focus on improving the
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resistance to the overfitting in convolutional layers rather than
enforcing the convolutions to capture features for lines.

Conceptually, our idea is that a convolution well capturing fea-
tures of lines would satisfy two criteria: 1) a convolution mainly
captures lines; and 2) lines captured should be located at the center
of the convolution. For examples, Figure 6 shows four 3 × 3 convo-
lutions illustrated as heat maps (where red denotes positive value,
blue denotes negative value and black denotes zero). Convolution
(a) and (b) are examples of ideal convolutions which capture one
straight line and two crossed lines (i.e., a T-junction), respectively.
On the other hand, convolution (c) does not capture lines. Finally, al-
though convolution (d) captures one straight line, the line captured
is not located at the center of it.

While learning to regulate convolutions in each convolutional
layer to approach the above-mentioned criteria, we propose to add
three penalties: 1) the value of the center element of a convolution
should be large for the second criteria; 2) the values of other element
of a convolution (except the center one) should be diverse (i.e., not
all of them are similar) for the first criteria; and 3) an additional
L2 regularization to avoid overfitting. The three penalties for all
convolutions (denoted as f s) are derived as follows, respectively.

Lcenter = −
∑
f ∈f s

∑
c ∈f .channels

c .center

Ldiv = −
∑
f ∈f s

∑
c ∈f .channels

H
{
δ (c \ c .center )

}
L2 =

∑
f ∈f s

∑
c ∈f .channels

∑
e ∈c

e2

(2)

where f .channels denotes the channels of a convolution f and
c .center denotes the center element of a channel c of a convolution.
Here we first use Softmax function δ (z) = ezi∑

zj ∈z e
zj to normalize

the values of elements in a channel c and then apply Shannon index
H (z) = −

∑
zi ∈z (zi ln zi ) to model the diversity. The overall penalty

is obtained by weighted sum of the three penalties as.

Lpenalty = γ1Lcenter + γ2Ldiv + γ3L2 (3)

4.3 Temporal Layer
After transforming a pathT as a sequence of spatial moving patterns
S in the previous layer, DeepIST captures the temporal dependency
among S in the temporal layer for travel time estimation of T . As
mentioned earlier, although it is natural to consider recurrent neu-
ral network models (RNN), e.g., LSTM, which have received great
success in modeling sequence data in natural language process-
ing [23] and in image/video processing [27], they typically suffer
from vanishing gradient and exploding gradient issues. Later we
experimentally show CNN models perform better than RNN for
travel time estimation. More specifically, we propose to apply a
one-dimensional CNN (1D-CNN) inspired by [14] to capture the
local temporal dependency along S instead of trying to capture
the temporal dependency for the whole S as an RNN model does.
Our idea is based on the intuition behind the First Law of Ge-
ography [29], “near things are more related than distant things”.
Specifically, 1D-CNN, with multiple convolutional layers, first ap-
plies the convolution operation on S along with a one-dimensional
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Figure 7: Temporal Layer
sliding window to capture the local temporal patterns among spa-
tial patterns in each window, and use the later convolutional layers
further capture higher-level temporal patterns hierarchically.
Model Architecture.As shown in Figure 7, the proposed 1D-CNN
model contains N convolution layers (e.g., N=2 in Figure 7), fol-
lowed by a flatten layer and r stacked fully-connected layer for the
final estimation (e.g., r=3). More specifically, for a given S ∈ R |I |×λ ,
the 1D-CNN model first truncates it by a maximal length Smax if
|S | > Smax (or appends zero vectors if |S | < Smax ) as S ′ ∈ RSmax×λ .
Smax is determined by data while it can cover more than 99% spatial
pattern sequences of all historical paths, (e.g., Smax=50 and λ=1024
in Figure 7). Then, the 1D-CNN takes S ′ as input y0 and feeds
y0 into N one-dimensional convolutional layers. In each convolu-
tional layer, it applies the convolution operation on the sequence
yn along with a one-dimensional sliding window, and uses padding
for location at boundaries of yn to maintain the dimension of rep-
resentations. The transformation at each convolutional layer n is
derived as follows.

yn =max_poolinд
(
f (yn−1 ∗′W n

1D + b
n
1D )

)
(4)

where ∗′ denotes the one dimensional convolutional operation
and f (·) is an activation function. Here, we also use the ReLU
function. We applymax_poolinд(·) to reduce the dimensionality of
the representations after the convolution operation. The number
of convolutions in each convolutional layer is denoted as cn1D and
the size of each convolution is denoted as f1D , (e.g., cn1D=1024 and
1024 for n=1 and 2, respectively and f1D=3 shown in Figure 7).

After N convolution layers, we use a flatten layer to transform
the output yN to a feature vector t , which is taken as the input t0
for the following r stacked fully-connected layers to estimate the
final result t̂ , i.e., the travel time estimation of the given trajectory
T , derived as t i = f

(
W i t i−1+bi

)
, whereW i and bi are the weights

and biases of the ith fully-connected layer. As shown in Figure 7,
the dimension of the r = 3 stacked fully-connected layers in our
design are 1024, 1024 and 1, respectively, and the final estimation
t̂ = tr . Note that we also adopt a dropout mechanism in the fully-
connected layers.

4.4 Multi-task Learning
We introduce a multi-task learning in the DeepIST framework.
During the training phase, DeepIST aims to not only estimate the
travel time for entire path but also for each sub-path simultaneously.
During the test phase, DeepIST skips the sub-path estimation part
and returns the estimated the travel time for the entire path only.
More specifically, for a spatial pattern sequence S = {s1, ..., sn }
transformed from T , each si corresponds to the spatial features
of sub-path τi . We simply use two stacked fully-connected layers
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with size λ and 1 to map each si to a scalar to estimate the travel
time of the sub-path. The travel time (ground truth) of each sub-
path is calculated based on map matching results. More specifically,
after matching a trajectory on a road network, each GPS sample
point is re-located on a road segment. We simply assume that the
moving speed between two consecutive sample points (there may
be multiple road segments between them) is constant. Based on
this, the travel time of any sub-path along the path is derived.

4.5 Loss Function
We finally present the loss function of DeepIST, which is trained
end-to-end. During the training phase, we use the mean absolute
percentage error (MAPE) as our objective functions for travel time
estimation of both entire path and each sub-path, which is a relative
error to lead DeepIST to estimate accurate results for both the short
paths and the long paths. Given a training dataset D, for the entire
path estimation, the loss function is derived as follows.

Lpath (θ ) =
∑
T ∈D

|t̂T − time(T )|

time(T )
(5)

where θ denotes the trainable parameters in DeepIST, t̂T denotes
the final output as the estimated travel time by DeepIST and time(T )
is the ground truth for travel time of T , which is the time interval
between the timestamps of the last and first sample points inT . For
the sub-path estimation, the loss function is derived as follows.

Lsub (θ ) =
∑
T ∈D

∑
τ ∈T

|t̂τ − time(τ )|

time(τ )
(6)

where τ denotes a sub-path of T , t̂τ denotes the estimated travel
time of τ and time(τ ) is the ground truth for τ . Our model is trained
to minimize the weighted combination of two loss terms corre-
sponding with penalties in PathCNN.

L = βLpath + (1 − β)Lsub + γ1Lcenter + γ2Ldiv + γ3L2 (7)

where β is for weighting Lpath and Lsub .

5 EXPERIMENTS
In this section, we conduct extensive experiments using two large-
scale real-world trajectory datasets to evaluate the performance of
DeepIST against several state-of-the-art methods for travel time
estimation. We also perform sensitivity tests on parameters of Deep-
IST, examine several issues in DeepIST.

5.1 Datasets
The following describes the trajectory datasets used in the evalua-
tion. For each dataset, we first select trajectories with travel time
within 1 to 60 minutes and match the trajectories to the road net-
work by existing map matching techniques [21, 22] to obtain the
corresponding sequence of road segments (i.e., paths). Then we
filter mismatched paths which have much longer (+10%) or shorter (-
10%) moving distances comparing with their raw trajectories. Some
statistics of the extracted paths are summarized in Table 1.
Porto taxi data, made available for the Taxi Service Trajectory
Prediction Challenge@ ECML/PKDD 2015 [2], contains taxi tra-
jectories of 442 taxis running from January 2013 to June 2014 in

Table 1: Statistics of datasets

Dataset Porto Chengdu
# of paths 700,626 2,016,782

moving distance mean 6.373 km 5.398 km
travel time mean 694.259 sec 777.879 sec

Porto, Portugal. We generate paths by the above-mentioned pre-
processing method to yield 0.7 million paths.
Chengdu taxi data, made available for the Taxi travel time estima-
tion challenge@ dcjingsai 2016 [3], contains 1.4 billion GPS sample
points of 14,864 taxis running in August 2014 in Chengdu, China.
We segment the sample points of each taxi into trajectories based
on a 60-second time gap. Finally, we generate paths by the above-
mentioned pre-processing method to yield 2.02 million paths.

5.2 Baseline Methods for Comparison
The travel time estimation methods we evaluate for comparison
include five state-of-the-arts (road-based, path-based and three
learning-based methods) and one variant of our proposed method.
spd-LSTM [20], a road-based method, uses LSTMmodel to predict
the speed of each road segment by using historical travel speeds
with hourly time slots. The travel time of a query path is estimated
by summing up the travel time of road segments in it.
TEMP [32], a path-based method, estimates the travel time of a
given path based on the nearby historical trajectories, which have
close source and destination with the query path. About 9% of the
query paths can not be estimated in the original TEMP method due
to the lack of nearby trajectories. For those paths, we enlarge the
neighborhood in TEMP method until finding enough number of
nearby trajectories (i.e., 10 trajectories in our experiments).
DeepTravel [38], a learning-based method, transforms a query
path into a sequence of geographic cells, each of which is repre-
sented by several manually-craft features. LSTM model is used to
learn and estimate the travel time of the query path.
WDR [34], a learning-based method, transforms a query path as a
number of manually-craft features. An ensemble regression model,
consisting of a wide, a deep fully-connected network and an LSTM
model, is used to estimate the travel time of the query path.
DeepTTE [31], a learning-based method, transforms a query path
as a sequence of windows containing consecutive re-sampled points
along the path (with equal distance gaps) and extracts k features
for each window. LSTM model is used to learn and estimate the
travel time of the query path.
DeepISTLSTM , a variant of DeepIST, uses LSTM model instead of
1D-CNN model in the temporal layer of the original DeepIST.

5.3 Experimental Setup
In each experiment, for a dataset, we randomly split it into three
folds, 80%, 10% and 10% as the training set, the validation set, and
the test set, respectively. We use the training set to train models
while using the validation set to select the best models, and evaluate
the performance using the test set. We repeat each experiment for
5 times and report the mean of the different runs. We use mean
absolute error (MAE), mean absolute percentage error (MAPE) and
root-mean-squared error (RMSE) between the predicted results and
the ground truths (in seconds) as the performance metrics.
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Table 2: Performance Evaluation

Dataset Porto Chengdu
Metric RMSE (sec) MAE (sec) MAPE (%) RMSE (sec) MAE (sec) MAPE (%)

spd-LSTM 281.94 127.61 18.58 406.94 185.44 23.96
TEMP 254.49 115.59 16.71 341.57 147.09 18.84

DeepTravel 228.32 98.59 14.01 228.56 125.78 16.25
WDR *159.35 *70.67 *10.25 238.85 105.71 13.74

DeepTTE 180.41 75.47 10.92 *212.74 *95.52 *12.53
DeepISTLSTM 112.64 95.29 8.67 185.63 78.02 10.13

DeepIST 98.22 (-38.36%) 53.45 (-24.37%) 7.78 (-24.06%) 167.81 (-21.12%) 71.02 (-25.64%) 9.45 (-24.58%)

Regarding the default parameter settings, for DeepIST, the details
for network architecture are shown in Figure 5 and Figure 7. The
size of convolutions in both PathCNN and 1D-CNN is set to 3 × 3.
The window sizew of the sliding window is set to 0.5 km, and the
sliding step s is set to 0.4 km to generate the overlapped windows.
The Smax is determined by data while it can cover more than 99%
spatial pattern sequences of paths, (e.g., Smax=53 for the Porto
dataset). The image size k × k for each window is set to 100 × 100,
and each image covers the same size of geographic area of 0.5 ×
0.5(km2) (i.e., rlnд=0.0058699 and rlat=0.0044966), which reflect the
granularity of an image. The β which balances the error between
estimation of the entire path and sub-paths is set to 0.6, and the
γ1, γ2 and γ3 for weighting the regularization is set to 0.1, 0.1 and
0.01, respectively. For DeepISTLSTM , we set the hidden unit as
1024 for the singly-layer LSTM model in temporal layer, and use
the same parameter settings used in DeepIST for other parameters.
For DeepTravel, WDR and DeepTTE, we generate the required
configurations and meta-data for each dataset and tune the best
parameter settings. The initial learning rate is set to 0.0001 and
we use Adam [15] for optimization. To obtain converged results,
the number of iterations for model training varies for individual
models and different datasets.

Our model is implemented in python with Tensorflow. We train
and evaluate all models on a server with NVIDIA GTX 1080 GPU,
and one Intel Core i5-8400 CPU on the Ubuntu 18.04.

5.4 Evaluation of Models
The performance obtained by all evaluated methods is summarized
in Table 2. DeepIST outperforms all the compared methods. As
shown, the improvement ratio of MAE (compared with the best
of these existing models, marked by ’*’) are 24.37% and 25.64% in
Porto and Chengdu datasets, respectively. We have the following
observations from the comparison.
Learning basedmodels outperform road- andpath-basedmeth-
ods. Comparing with non-learning-based methods, spd-LSTM and
TEMP, the learning-basedmodels (i.e., DeepTraval,WDR, DeepTTE,
DeepISTLSTM and DeepIST) achieve better performance because
they can learn discriminative patterns from the whole paths for the
estimation while spd-LSTM may miss the correlations and intersec-
tions between road segments and TEMP fails to find nearby paths
of the query paths or its assumption fails.
PathCNN is effective to extract spatialmoving patterns.Among
DeepTravel, WDR, DeepTTE and DeepISTLSTM , all of which ex-
ploit LSTM to capture temporal patterns among extracted moving

(a) Porto (b) Chengdu

Figure 8: Training Set Size

patterns while exploring different approaches to extract spatial
moving patterns, DeepISTLSTM achieves the best performance, in-
dicating that it is more effective than others in extracting spatial
moving patterns by exploring the novel ideas in PathCNN.
Exploring 1D-CNN is effective to capture temporal patterns.
Comparing with DeepISTLSTM , the performance improvement
of DeepIST is clear and impressive. It shows that the proposed
1D-CNN is more effective than LSTM in capturing local temporal
patterns for travel time estimation.

Here, we also study the impact of training set size for learning-
based models. In the following, we only show MAE for evaluation
because RMSE and MAPE show similar trends with MAE. For the
training set size, we increase the training set size d from 0.1M to
0.56M for Porto dataset and 0.5M to 1.6M for Chengdu dataset.
As shown in Figure 8(a) and Figure 8(b) for both datasets, as the
training size d increases, the performance of all learning-based
models continue to improve and converge when d is greater than
0.3M in Porto and 1M in Chengdu. It also shows DeepIST soundly
outperforms all other models in both datasets under various d .

5.5 Parameter Sensitivity in DeepIST
Here we examine the impact of parameter settings in DeepIST on
its performance. To test the parameter sensitivity of DeepIST, we
vary the values of important parameters, the model architecture
including the number of layers and the number of convolutions
in both PathCNN and 1D-CNN, the window sizew and the image
size k × k (which reflects the resolution of images) to observe the
changes in MAE, as shown in Figure 9.
Model Architecture. First of all, we study the impact of the model
architecture. Generally speaking, large numbers of layers and con-
volutions describe a deep and wide network, which is capable to fit
the training data, but may need large size of training data. On the
other hand, small numbers of layers and convolutions desribing
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(a) No. of Layers of PathCNN (b) No. of Convolutions of PathCNN

(c) No. of Layers of 1D-CNN (d) No. of Convolutions of 1D-CNN

(e) Window Sizew (f) Image resolution k × k

Figure 9: Parameter Sensitivity of DeepIST

a shallow and narrow network which is not capable to generalize
the training set for the estimation. As shown in Figure 9(a)-(d), for
both datasets, the best performance is achieved when number of
layers in PathCNN and 1D-CNN are set to 4 and 2, respectively,
and the performance does not change much when the number of
convolutions of PathCNN and 1D-CNN are larger than 16 and 1024.
Window sizew . Figure 9(e) shows that setting the window size of
the sliding window smaller than 0.5 km in both Porto and Chengdu
datasets achieves the best performance. A small window size w
forces the model to focus on extracting local spatial moving pat-
terns from shorter sub-paths while a large window size may cover
irrelevant points and may lead to noises and cause overfitting.
Image resolution k × k . Figure 9(f) shows that setting the resolu-
tion of images greater than 100 × 100 for both Porto and Chengdu
datasets achieves converged performance. Generally speaking, a
small k , indicating low resolution in images, does not provide suf-
ficient information of paths in images. On the other hand, the
maximum size of images is constrained by hardware and a large k
leads to long training time.

Based on these results, in DeepIST, the number of layers in
PathCNN and 1D-CNN is set to 4 and 2, respectively. The number
of convolutions in PathCNN and 1D-CNN is set to 16 and 1024,
respectivly. The window sizew is set to 0.5 km, and the resolution
k ×k of generated images is set to 100× 100. There are several addi-
tional parameters in DeepIST that are empirically decided, including
convolution size, sliding step, β and weights for regularization in
PathCNN, in the process of tuning the above parameters. Due to
the lack of space, we skip the details in tuning those parameters.

5.6 Study of Unique Issues in DeepIST
In this section, we examine the following unique issues arising in
the design of DeepIST: i) the effect of overlapped windows, ii) the
effect of plotting traffic condition, road network, and traffic signals
in images, iii) the effect of alternative designs of max+avg layer in

(a) Plotted on Images (b) Overlaps of Windows

(c) Layer Design of PathCNN (d) Issues of PathCNN

Figure 10: Comparison of approaches to issues in DeepIST

PathCNN and iv) the effect of multi-tasking and regularization in
PathCNN. We perform experiments to compare alternative choices
in these issues and justify our decisions.

Regarding the issue of plotting additional information in the
“generalized” images, we compare four different approaches: 1)
P plots only sub-paths of query paths, 2) P+T further plots the
corresponding traffic condition, 3) Best (P+T+R) further plots
the corresponding road network and 4) P+T+R+S further plots the
corresponding traffic signals. Figure 10(a) shows that while P al-
ready achieves competitive performance with existing works, P+T
significantly improves the performance and Best(P+T+R) further
improves the performance. This observation suggests that the infor-
mation of traffic condition and road network are both very useful
for the travel time estimation. One the other hand, P+T+R+S does
not improve much or even worse than Best(P+T+R), which may
be due to that the incomplete of traffic signal data from the data
source, OpenStreetMap (e.g., there are only 2,398 stop signs and
2,447 traffic lights in Porto in OpenStreetMap).

Regarding the issue of overlap in adjacent windows, we compare
two settings: 1) the No overlap setting generates non-overlapped
windows by setting the same value to the window size and the
sliding step, w=s=0.5km, and 2) the Best generates overlapped
windows by settingw=0.5km and s=0.1km. Figure 10(b) shows that
Best outperforms No overlap in both datasets, which suggests
that missing moving patterns between adjacent windows as No
overlap does is harmful for the travel time estimation.

Regarding the design of max+avg layer of PathCNN, we com-
pare four alternatives: 1) the max adopts a convolution layer fol-
lowed by a max pooling layer, 2) the avg adopts a convolution
layer followed by an average pooling layer, 3) the conv->max+avg
adopts one convolution layer followed by both of the max pool-
ing and average pooling layers and 4) Best which is the proposed
max+avg layer in PathCNN. Figure 10(c) shows that adopting both
max pooling and average pooling layers outperforms adopting only
single max pooling layer or average pooling layer. Moreover, Best,
which adopts separate two convolution layers, further outperforms
conv->max+avg, which adopts a single convolution layer, due to
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that the single convolution layer would learns aggregated features
for the followed two pooling layers.

Finally, we study the effect of multi-tasking learning and regular-
ization in PathCNN for extracting line features. Figure 10(d) shows
that Best which adopts both multi-tasking and regularization in
PathCNN outperforms No multi-tasking, which does not adopt
multi-tasking, and No regularization, which does not adopt reg-
ularization in PathCNN. This suggests that the both methods are
useful for travel time estimation.

6 CONCLUSION
This study focuses on the travel time estimation for paths. Prior
works fail to well capture the spatial moving patterns and tempo-
ral patterns among spatial patterns embedded in a path and thus
can not estimate the travel time accurately. To fill in this gap, we
propose to treat a path as a sequence of sub-paths plotted into
images and harness the power of convolutional neural network
model (CNN) to model the complex spatial moving patterns and
their temporal patterns along the path for travel time estimation.
To achieve the goal, we propose a novel three-layer framework,
namely DeepIST, which generates images containing sub-paths of
paths corresponding with additional information, including traffic
conditions, road network and traffic signals, propose a novel two-
dimensional CNN, namely PathCNN, to extract spatial patterns for
lines in images, and uses a one-dimensional CNN to capture the
temporal patterns for travel time estimation. Empirical result shows
that DeepIST soundly outperforms all existing models in multiple
large-scale real-world datasets.
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